A Peer-To-Peer Publication Model on Blockchain

Author:

Khan Imtiaz,Shahaab Ali

Abstract

In the past few decades, there has been a sharp rise of research irreproducibility and retraction, to a point that now is deemed as a crisis. Addressing this crisis, we present a peer-to-peer (P2P) publication model that utilizes blockchain and smart contract technologies. Focusing primarily on researchers and reviewers, the conceptual P2P publication model addresses the sociocultural and incentivization aspects of the irreproducibility crisis. In the P2P publication model, instead of a complete publication, a preapproved experimental design will be published on an incremental basis (unit-by-unit) and authorship will be shared with reviewers. The concept of the P2P publication model was inspired by the transformational journey the music publishing industry has undertaken as it traverses through vinyl age (complete albums) to the Spotify age (single-by-single), where there is a growing inclination among artists toward building an incremental album, taking account of feedback from fans and utilizing automated revenue collection and sharing systems. The ability to publish incrementally through the P2P publication model will relieve researchers from the burden of publishing complete and “good results” while simultaneously incentivizing reviewers to undertake rigorous review work to gain authorship credit in the research. The proposed P2P publication model aims to transform the century-old publication model and incentivization structure in alignment with open access publication ethos of the 21st century.

Publisher

Frontiers Media SA

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain solutions for scientific paper peer review: a systematic mapping of the literature;Data Technologies and Applications;2023-08-17

2. Payroll Management Using Blockchain;International Conference on Innovative Computing and Communications;2023

3. Blockchain-based decentralized management of IoT devices for preserving data integrity;Blockchain Technology Solutions for the Security of IoT-Based Healthcare Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3