Association between the relative abundance of phyla actinobacteria, vitamin C consumption, and DNA methylation of genes linked to immune response pathways

Author:

Noronha Natália Yumi,Noma Isabella Harumi Yonehara,Fernandes Ferreira Rafael,Rodrigues Guilherme da Silva,Martins Luzania dos Santos,Watanabe Lígia Moriguchi,Pinhel Marcela Augusta de Souza,Mello Schineider Isabelle,Diani Luísa Maria,Carlos Daniela,Nonino Carla Barbosa

Abstract

IntroductionThere is an emerging body of evidence that vitamin C consumption can modulate microbiota abundance and can also impact DNA methylation in the host, and this could be a link between diet, microbiota, and immune response. The objective of this study was to evaluate common CpG sites associated with both vitamin C and microbiota phyla abundance.MethodsSix healthy women participated in this cohort study. They were divided into two groups, according to the amount of vitamin C they ingested. Ingestion was evaluated using the 24-h recall method. The Illumina 450 k BeadChip was used to evaluate DNA methylation. Singular value decomposition analyses were used to evaluate the principal components of this dataset. Associations were evaluated using the differentially methylated position function from the Champ package for R Studio.Results and discussionThe group with higher vitamin C (HVC) ingestion also had a higher relative abundance of Actinobacteria. There was a positive correlation between those variables (r = 0.84, p = 0.01). The HVC group also had higher granulocytes, and regarding DNA methylation, there were 207 CpG sites commonly related to vitamin C ingestion and the relative abundance of Actinobacteria. From these sites, there were 13 sites hypomethylated and 103 hypermethylated. The hypomethylated targets involved the respective processes: immune function, glucose homeostasis, and general cellular metabolism. The hypermethylated sites were also enriched in immune function-related processes, and interestingly, more immune responses against pathogens were detected. These findings contribute to understanding the interaction between nutrients, microbiota, DNA methylation, and the immune response.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3