Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and Metabolomics

Author:

Zhang Zhenbin,Shahzad Khuram,Shen Sijun,Dai Rong,Lu Yue,Lu Zhiqi,Li Chuang,Chen Yifei,Qi Ruxin,Gao Pengfei,Yang Qingyong,Wang Mengzhi

Abstract

Ruminants account for a relatively large share of global nitrogen (N) emissions. It has been reported that nutrition control and precise feeding can improve the N efficiency of ruminants. The objective of the study was to determine the effects of soluble protein (SP) levels in low-protein diets on growth performance, nutrient digestibility, rumen microbiota, and metabolites, as well as their associations of N metabolism in fattening Hu sheep. Approximately 6-month-old, 32 healthy fattening male Hu sheep with similar genetic merit and an initial body weight of 40.37 ± 1.18 kg were selected, and divided into four groups (n = 8) using the following completely randomized design: the control diet (CON) with a 16.7% crude protein (CP) content was prepared to meet the nutritional requirements of fattening sheep [body weight (BW): 40 kg, average daily gain (ADG): 200–250 g/d] according to the NRC recommendations; other three include low protein diets (LPA, LPB, and LPC) of CP decreased by ~10%, with SP proportion (%CP) of 21.2, 25.9, and 29.4 respectively. The feeding trial lasted for 5 weeks including the first week of adaptation. The results showed no difference in the growth performance (P > 0.05); DM and CP digestibility were higher in LPB and LPC, with maximum organic matter digestibility in LPB (P < 0.05). Low-protein diets decreased serum urea-N whereas urinary urea-N was lower in LPB and LPC (P < 0.05), while N retention and the biological value of N were higher in LPB and LPC (P < 0.05). Ruminal NH3-N concentration in LPA and LPB was low than CON (P < 0.05), while total volatile fatty acid (TVFA), acetate, propionate, and butanoate were all lowest in LPA (P < 0.05). In the rumen microbiome, LPB increased the community richness in Prevotellaceae and Prevotella_1 (P < 0.05); Metabolomics analysis revealed low-protein diets downregulated the amino acid metabolism pathways, while the biosynthesis of unsaturated fatty acids along with vitamin B6 metabolism were upregulated with increased SP. These findings could help us understand the role of different SP levels in the regulation of rumen microbial metabolism and N efficiency. Overall, low-protein diets (CP decreased by ~10%) can reduce serum urea-N and ruminal NH3-N without affecting the growth performance of fattening Hu sheep. Additionally higher N efficiency was obtained with an SP proportion of ~25–30%.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3