Dietary bile acids supplementation modulates immune response, antioxidant capacity, glucose, and lipid metabolism in normal and intrauterine growth retardation piglets

Author:

Liu Yang,Azad Md. Abul Kalam,Kong Xiangfeng,Zhu Qian,Yu Zugong

Abstract

Intrauterine growth retardation (IUGR) results in intestinal dysfunction contributing to metabolic syndrome and growth lag of piglets. Bile acid (BA) presents various bioactivities, including regulation roles in antioxidant, anti-inflammation, and glucose and lipid metabolism. Forty-eight weaned piglets were allocated to four groups in a 2 × 2 factorial arrangement with the effects of BA supplementation and IUGR challenge. Twenty-four IUGR piglets and 24 normal birth weight (NBW) piglets were allocated into two groups, respectively, including the control group fed with a basal diet, and the treatment group fed a basal diet supplemented with 400 mg/kg BA. The experiment lasted 28 days. The results indicated that BA improved liver and spleen indexes in IUGR piglets, whereas decreased blood RDW-CV and RDW-SD regardless of IUGR (P < 0.05). Dietary BA supplementation decreased plasma CAT activity and liver GSH concentration regardless of IUGR, whereas increased plasma GSH and liver H2O2 and decreased liver T-AOC in weaned piglets (P < 0.05). In addition, IUGR downregulated liver Nrf1 and Nrf2 expression levels, while BA supplementation upregulated the Nrf2 expression of liver in weaned piglets (P < 0.05). Dietary BA decreased (P < 0.05) jejunal GSH concentration and ileal CAT activity regardless of IUGR. Furthermore, IUGR upregulated (P < 0.05) jejunal SOD and CAT expression levels; however, dietary BA upregulated ileal Nrf1 (P < 0.05) and Keap1 (P = 0.07) expression levels in piglets regardless of IUGR. Moreover, IUGR upregulated the liver lipid synthesis (FAS) and downregulated HSL and SCD1 expression levels, while dietary BA downregulated liver FAS and SCD1 expression levels (P < 0.05). However, BA supplementation could enhance liver gluconeogenesis by upregulating (P < 0.05) the liver G6PC and PCK1 expression levels in the NBW piglets but not in the IUGR piglets. Collectively, these findings suggest that BA could regulate the redox status of weaned piglets by regulating the Nrf2/Keap1 pathway and improving liver glucose and lipid metabolism of IUGR piglets. These findings will provide a reference for the application of BA in swine production; moreover, considering the physiological similarity between pigs and humans, these findings will provide a reference for IUGR research in humans.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3