Identification and Characterization of the Stability of Hydrophobic Cyclolinopeptides From Flaxseed Oil

Author:

Fojnica Adnan,Leis Hans-Jörg,Murkovic Michael

Abstract

Flaxseed (linseed) is a cultivar of the spring flowering annual plant flax (Linum usitatissimum) from the Linaceae family. Derivatives of this plant are widely used as food and as health products. In recent years, cyclic peptides isolated from flaxseed and flaxseed oil, better known as cyclolinopeptides (CLPs), have attracted the attention of the scientific community due to their roles in the inhibition of osteoclast differentiation or their antimalarial, immunosuppressive, and antitumor activities, as well as their prospects in nanotechnology and in the biomedical sector. This study describes the detection, identification, and measurement of CLPs in samples obtained from nine different flaxseed oil manufacturers. For the first time, Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer was used for CLP identification together with RP-HPLC. The routine analyses were performed using RP chromatography, measuring the absorption spectra and fluorescence detection for identifying tryptophan-containing peptides using the native fluorescence of tryptophan. In addition, existing protocols used for CLP extraction were optimized and improved in a fast and cost-efficient way. For the first time, 12 CLPs were separated using methanol/water as the eluent with RP-HPLC. Finally, the stability and degradation of individual CLPs in the respective flaxseed oil were examined over a period of 60 days at different temperatures. The higher temperature was chosen since this might reflect the cooking practices, as flaxseed oil is not used for high-temperature cooking. Using HPLC–MS, 15 CLPs were identified in total in the different flaxseed oils. The characterization of the peptides via HPLC–MS highlighted two types of CLP profiles with a substantial variation in the concentration and composition of CLPs per manufacturer, probably related to the plant cultivar. Among the observed CLPs, CLP-O, CLP-N, and CLP-B were the least stable, while CLP-C and CLP-A were the most stable peptides. However, it is important to highlight the gradual degradation of most of the examined CLPs over time, even at room temperature.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3