Structural, antioxidant, and immunomodulatory activities of an acidic exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010

Author:

Huang Yan-yan,Wu Jia-min,Wu Wei-tong,Lin Jia-wei,Liang Yan-tong,Hong Zhen-zhen,Jia Xiang-ze,Liu Dong-mei

Abstract

This study investigated the structural, antioxidant, and immunomodulatory activities of acidic exopolysaccharide (EPS-LP2) isolated from Lactiplantibacillus plantarum DMDL 9010. EPS-LP2 is composed of fucose (Fuc), arabinose (Ara), galactose (Gal), glucose (Glc), mannose (Man), and D-fructose (Fru) with a molar ratio of 0.13: 0.69: 8.32: 27.57: 62.07: 0.58: 0.46, respectively. Structural analysis of EPS-LP2 exhibited a smooth irregular lamellar surface, rod-like structure with swollen ends and slippery surfaces, and good thermal stability. Based on the methylation and NMR analysis, sugar residues including t-Manp, t-Glcp, 2-Manp, 6-Galp, 6-Glcp, and 4-Glcp were found to exist in EPS-LP2. In the 50∼400 μg/ml range, EPS-LP2 showed negligible neurotoxicity to RAW264.7 cells. Moreover, EPS-LP2 could protect RAW264.7 cells from oxidative injury by lowering the generation of reactive oxygen species (ROS), malondialdehyde (MDA), and the secretion of lactate dehydrogenase (LDH). In contrast, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) were observed. Immunoreactivity assays showed that EPS-LP2 could suppress the expression of NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) and inhibit the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-κB-gene binding (NF-κB) cell pathway. Conclusively, EPS-LP2 could be a potential natural antioxidant and immunomodulatory agent in functional foods and medicines.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3