Effect of High-Humidity Hot Air Impingement Steaming on Cistanche deserticola Slices: Drying Characteristics, Weight Loss, Microstructure, Color, and Active Components

Author:

Ai Ziping,Lin Yawen,Xie Yongkang,Mowafy Samir,Zhang Yue,Li Mengjia,Liu Yanhong

Abstract

Cistanche deserticola is one of the most precious herbal medicines and is widely used in the pharmaceutical and healthy food industries. Steaming is an important step prior to drying in the processing of C. deserticola. This research investigated the effects of high-humidity hot air impingement steaming (HHAIS) parameters such as temperature, time, and relative humidity (RH) on drying characteristics, weight loss, color, microstructure, and active components of C. deserticola slices. The results showed that the steaming process caused a weight loss in C. deserticola; however, increasing the RH reduced the weight loss. Starch gelatinization observed from the microstructure of the steamed samples explained their long drying time. The Page model can well fit the drying process with a high R2 (>0.956) under the drying conditions of 60°C and 6 m/s. Steaming increased the content of phenylethanoid glycosides, and the highest content was obtained at 95°C and 60% RH for 20 min, 75°C and 70% RH for 20 min, and 75°C and 60% RH for 30 min. The steamed samples appeared in an oil black color. When the color difference (ΔE) values were in the range of 16.79–20.12, the contents of echinacoside and acteoside reached the maximum. Steaming at 95°C and 60% RH for 20 min, 75°C and 70% RH for 20 min, and 75°C and 60% RH for 30 min are the optimum process conditions. The results from this work provide innovative steaming technology and suitable processing parameters for producing C. deserticola decoction pieces with a high quality, which will broaden its potential application in the functional health food industry.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3