Dietary Fiber as a Counterbalance to Age-Related Microglial Cell Dysfunction

Author:

Vailati-Riboni Mario,Rund Laurie,Caetano-Silva Maria Elisa,Hutchinson Noah T.,Wang Selena S.,Soto-Díaz Katiria,Woods Jeffrey A.,Steelman Andrew J.,Johnson Rodney W.

Abstract

With increasing age, microglia shift toward a pro-inflammatory phenotype that may predispose individuals to neurodegenerative disease. Because fiber fermentation in the colon produces bioactive short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) that signal through the gut-brain axis, increasing dietary fiber may prevent or reverse age-related dysregulation of microglia. Adult (3–4 months old) and aged (23–24 months old) male and female mice were given ad libitum access to a modified AIN-93M diet with 1% cellulose or the same diet with 2.5 or 5.0% inulin for 8 weeks. Several adult and aged male mice fed 0 or 5% inulin were randomly selected for whole brain single-cell RNA sequencing (scRNA-seq) and differential gene expression analysis to classify brain microglia according to gene expression profile; and identify additional genetic markers of aging as possible targets for dietary interventions. Microglia were isolated from remaining mice and expression of selected aging-, inflammatory-, and sensome-related genes was assessed by Fluidigm as was the ex vivo secretion of tumor necrosis factor-alpha (TNF-α). SCFAs were measured in samples collected from the cecum. Microglia from adult and aged mice segregated into distinct phenotypes according to their gene expression profile. In aged mice, a considerably greater proportion of the population of microglia was identified being “activated” and a considerably smaller proportion was identified being “quiescent.” These findings using whole brain scRNA-seq were largely corroborated using highly purified microglia and Fluidigm analysis to assess a selected panel of genes. Aged mice compared to adults had lower levels of SCFA’s in cecum. Dietary inulin increased SCFAs in cecum and mostly restored microglial cell gene expression and TNF-α secretion to that seen in adults. Sex differences were observed with females having lower levels of SCFAs in cecum and increased neuroinflammation. Overall, these data support the use of fiber supplementation as a strategy to counterbalance the age-related microglial dysregulation.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3