The relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression on offspring growth and body composition

Author:

Argentato Perla Pizzi,Marchesi Jorge Augusto Petroli,Dejani Naiara Naiana,Nakandakare Patrícia Yury,Teles Laísla de França da Silva,Batista Lívia Patrícia Rodrigues,Leitão Maria Paula Carvalho,Luzia Liania Alves,Ramos Ester Silveira,Rondó Patricia Helen

Abstract

Background and objectiveImprinted genes are important for the offspring development. To assess the relationship between obesity-related H19DMR methylation and H19 and IGF2 gene expression and offspring growth and body composition.MethodsThirty-nine overweight/obese and 25 normal weight pregnant women were selected from the “Araraquara Cohort Study” according to their pre-pregnancy BMI. Fetal growth and body composition and newborn growth were assessed, respectively, by ultrasound and anthropometry. The methylation of H19DMR in maternal blood, cord blood, maternal decidua and placental villi tissues was evaluated by methylation-sensitive restriction endonuclease qPCR, and H19 and IGF2 expression by relative real-time PCR quantification. Multiple linear regression models explored the associations of DNA methylation and gene expression with maternal, fetal, and newborn parameters.ResultsH19DMR was less methylated in maternal blood of the overweight/obese group. There were associations of H19DMR methylation in cord blood with centiles of fetal biparietal diameter (BPD) and abdominal subcutaneous fat thickness and newborn head circumference (HC); H19DMR methylation in maternal decidua with fetal occipitofrontal diameter (OFD), HC, and length; H19DMR methylation in placental villi with fetal OFD, HC and abdominal subcutaneous fat thickness and with newborn HC. H19 expression in maternal decidua was associated with fetal BPD and femur length centiles and in placental villi with fetal OFD and subcutaneous arm fat. IGF2 expression in maternal decidua was associated with fetal BPD and in placental villi with fetal OFD.ConclusionTo our knowledge, this is the first study to demonstrate associations of imprinted genes variations at the maternal-fetal interface of the placenta and in cord blood with fetal body composition, supporting the involvement of epigenetic mechanisms in offspring growth and body composition.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference34 articles.

1. 2020

2. Gestational weight gain across continents and ethnicity: systematic review and meta-analysis of maternal and infant outcomes in more than one million women;Goldstein;BMC Med.,2018

3. Impact of maternal body mass index and gestational weight gain on pregnancy complications: an individual participant data meta-analysis of European, North American and Australian cohorts;Girirajan;Physiol Behav.,2011

4. Imprinted gene expression in fetal growth and development;Lambertini;Placenta.,2012

5. The role and interaction of imprinted genes in human fetal growth;Moore;Philos. Trans. R. Soc. B Biol. Sci.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3