Absorption and Resonance Rayleigh Scattering Spectra of Ag(I) and Erythrosin System and Their Analytical Application in Food Safety

Author:

Wang Jian,Liu Shaopu,Shen Wei

Abstract

In pH 4.4∼4.6 weakly acidic media, erythrosine (Ery) can react with Ag(I) to form hydrophobic ion-association complex, which can further aggregate to form nanoparticles with an average particle size of about 45 nm under the action of water phase extrusion and van der Waals force. As a result, it could lead to a decrease of absorbance, a significant enhancement of resonance Rayleigh scattering (RRS) and the appearance of a new emission spectrum. Based on these Phenomena, two new methods (spectrophotometry and RRS) were established for the determination of trace Ag(I). The detection limits for Ag(I) by spectrophotometry and RRS are 9.74 and 0.12 ng/ml, respectively. In this paper, we have investigated the formation of nanoparticles, the optimum reaction conditions, the influence factors, explored the reason for enhancement of the scattering intensity and the effect of coexisting substance. This research shows that RRS method not only has good selectivity and high sensitivity, but also is simple and rapid. Analyzing of actual samples and standard samples, the determination result of this method is consistent with that of standard methods (Flame atomic absorption spectroscopy). Thus the method had potential feasibility to analysis for Ag(I) in the environmental water samples, pharmaceutical, and food industries.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3