EVOO Promotes a Less Atherogenic Profile Than Sunflower Oil in Smooth Muscle Cells Through the Extracellular Vesicles Secreted by Endothelial Cells

Author:

Santiago-Fernandez Concepción,Rodríguez-Díaz Cristina,Ho-Plagaro Ailec,Gutierrez-Repiso Carolina,Oliva-Olivera Wilfredo,Martin-Reyes Flores,Mela Virginia,Bautista Rocío,Tome Mónicas,Gómez-Maldonado Josefa,Tinahones Francisco J.,Garcia-Fuentes Eduardo,Garrido-Sánchez Lourdes

Abstract

BackgroundLittle is known about the effect of extra virgin olive (EVOO) and sunflower oil (SO) on the composition of extracellular vesicles (EVs) secreted by endothelial cells and the effects of these EVs on smooth muscle cells (SMCs). These cells play an important role in the development of atherosclerosis.MethodsWe evaluated the effects of endothelial cells-derived EVs incubated with triglyceride-rich lipoproteins obtained after a high-fat meal with EVOO (EVOO-EVs) and SO (SO-EVs), on the transcriptomic profile of SMCs.ResultsWe found 41 upregulated and 19 downregulated differentially expressed (DE)-miRNAs in EVOO-EVs. Afterwards, SMCs were incubated with EVOO-EVs and SO-EVs. SMCs incubated with SO-EVs showed a greater number of DE-mRNA involved in pathways related to cancer, focal adhesion, regulation of actin cytoskeleton, and MAPK, toll-like receptor, chemokine and Wnt signaling pathways than in SMCs incubated with EVOO-EVs. These DE-mRNAs were involved in biological processes related to the response to endogenous stimulus, cell motility, regulation of intracellular signal transduction and cell population proliferation.ConclusionEVOO and SO can differently modify the miRNA composition of HUVEC-derived EVs. These EVs can regulate the SMCs transcriptomic profile, with SO-EVs promoting a profile more closely linked to the development of atherosclerosis than EVOO-EVs.

Funder

Instituto de Salud Carlos III

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3