The Phytochemical Rhein Mediates M6A-Independent Suppression of Adipocyte Differentiation

Author:

Huang Linyuan,Zhang Jun,Zhu Xinyun,Mi Xue,Li Qiujie,Gao Jing,Zhou Jianheng,Zhou Jun,Liu Xiao-Min

Abstract

Adipogenesis is mediated by the complex gene expression networks involving the posttranscriptional modifications. The natural compound rhein has been linked to the regulation of adipogenesis, but the underlying regulatory mechanisms remain elusive. Herein, we systematically analyzed the effects of rhein on adipogenesis at both the transcriptional and posttranscriptional levels. Rhein remarkably suppresses adipogenesis in the stage-specific and dose-dependent manners. Rhein has been identified to inhibit fat mass and obesity-associated (FTO) demethylase activity. Surprisingly, side-by-side comparison analysis revealed that the rhein treatment and Fto knockdown triggered the differential gene regulatory patterns, resulting in impaired adipocyte formation. Specifically, rhein treatment mildly altered the transcriptome with hundreds of genes dysregulated. N6-methyladenosine (m6A) methylome profile showed that, although the supply of rhein induced increased m6A levels on a small subset of messenger RNAs (mRNAs), few of them showed dramatic transcriptional response to this compound. Moreover, the specific rhein-responsive mRNAs, which are linked to mitotic pathway, are barely methylated or contain m6A peaks without dramatic response to rhein, suggesting separate regulation of global m6A pattern and adipogenesis mediated by rhein. Further identification of m6A-independent pathways revealed a positive regulator, receptor expressing-enhancing protein 3 (REEP3), in guidance of adipogenesis. Hence, this study provides the mechanistic view of the cellular actions of rhein in the modulation of adipogenesis and identifies a potential novel target for obesity therapeutic research.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference57 articles.

1. Obesity, inflammation, and cancer;Deng;Annu Rev Pathol.,2016

2. Targeting adipose tissue in the treatment of obesity-associated diabetes;Kusminski;Nat Rev Dru Discov,2016

3. Adapting to obesity with adipose tissue inflammation;Reilly;Nat Rev Endocrinol,2017

4. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo;Sebo;Development,2019

5. Adipogenesis;Sarjeant;Cold Spring Harb Perspect Biol.,2012

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3