Pregnancy and Lactation in Sprague-Dawley Rats Result in Permanent Reductions of Tibia Trabecular Bone Mineral Density and Structure but Consumption of Red Rooibos Herbal Tea Supports the Partial Recovery

Author:

McAlpine Michael D.,Yumol Jenalyn L.,Ward Wendy E.

Abstract

During pregnancy and lactation, maternal bone mineral density (BMD) is reduced as calcium is mobilized to support offspring bone development. In humans, BMD returns to pre-pregnancy levels shortly after delivery, shifting from a high rate of bone resorption during pregnancy and lactation, into a rapid phase of bone formation post-lactation. This rapid change in bone turnover may provide an opportunity to stimulate a greater gain in BMD and stronger trabecular and cortical structure than present pre-pregnancy. Providing polyphenols present in red rooibos herbal tea may promote such an effect. In vitro, red rooibos polyphenols stimulate osteoblast activity, reduce osteoclastic resorption, and increase mineral production. The study objective was to determine if consuming red rooibos from pre-pregnancy through to 4 months post-lactation resulted in a higher BMD and improved trabecular and cortical bone structure in a commonly used rat model. Female Sprague-Dawley rats (n = 42) were randomized to one of the following groups: PREG TEA (pregnant, received supplemental level of red rooibos in water: ~2.6 g /kg body weight/day in water), PREG WATER (pregnant, received water), or NONPREG CON (age-matched, non-pregnant control, received water) from 2 weeks pre-pregnancy (age 8 weeks) through to 4 months post-lactation. Rats were fed AIN-93G (pre-pregnancy through to the end of lactation) and AIN-93M (post-lactation onwards). BMD and trabecular structure (bone volume fraction, trabecular number, trabecular separation) were improved (p < 0.05) by 1- or 2-months post-lactation when comparing PREG TEA to PREG CON, though neither group recovered to the level of NONPREG CON. Cortical outcomes (cortical area fraction, cortical thickness, tissue mineral density) for PREG TEA and PREG CON were reduced (p < 0.05) following lactation but returned to the level of NONPREG CON by 2-months post-lactation, with the exception of cortical thickness. The lack of recovery of BMD and key outcomes of trabecular bone structure was unexpected. While consumption of red rooibos did not result in stronger bone post-lactation, red rooibos did support the partial recovery of trabecular BMD and bone structure following pregnancy and lactation. The findings also provide insight into the timing and dose of polyphenols to study in future interventions.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference48 articles.

1. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery;Kovacs;Physiol Rev.,2016

2. Intestinal calcium absorption of women during lactation and after weaning;Kalkwarf;Am J Clin Nutr.,1996

3. Factors associated with appendicular bone mass in older women. the study of osteoporotic fractures research group;Bauer;Ann Intern Med.,1993

4. Breastfeeding protects against hip fracture in postmenopausal women: the Tromso study;Bjornerem;J Bone Miner Res.,2011

5. Influence of number of pregnancies and total breast-feeding time on bone mineral density;Carranza-Lira;Int J Fertil Womens Med.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3