Producing natural functional and low-carbon milk by regulating the diet of the cattle—The fatty acid associated rumen fermentation, biohydrogenation, and microorganism response

Author:

Sun Xiaoge,Wang Yue,Ma Xiaoyan,Li Shengli,Wang Wei

Abstract

Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its various potent beneficial effects on human health, such as anticarcinogenic and antidiabetic properties. CLA could be generally found in ruminant products, such as milk. The amount of CLA in ruminant products mainly depends on the diet of the animals. In general, the fat content in the ruminant diet is low, and dietary fat supplementation can be provided to improve rumen activity and the fatty acid (FA) profile of meat and milk. Especially, dietary 18-carbon polyunsaturated FA (C18 PUFA), the dominant fat source for ruminants, can modify the milk FA profile and other components by regulating the ruminal microbial ecosystem. In particular, it can improve the CLA in milk, intensify the competition for metabolic hydrogen for propionate producing pathways and decrease methane formation in the rumen. Therefore, lipid supplementation appears to be a promising strategy to naturally increase the additional nutritional value of milk and contribute to lower methane emissions. Meanwhile, it is equally important to reveal the effects of dietary fat supplementation on rumen fermentation, biohydrogenation (BH) process, feed digestion, and microorganisms. Moreover, several bacterial species and strains have been considered to be affected by C18 PUFA or being involved in the process of lipolysis, BH, CLA, or methane emissions. However, no review so far has thoroughly summarized the effects of C18 PUFA supplementation on milk CLA concentration and methane emission from dairy cows and meanwhile taken into consideration the processes such as the microorganisms, digestibility, rumen fermentation, and BH of dairy cattle. Therefore, this review aims to provide an overview of existing knowledge of how dietary fat affects rumen microbiota and several metabolic processes, such as fermentation and BH, and therefore contributes to functional and low-carbon milk production.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3