Ultrasound treatment enhanced the functional properties of phycocyanin with phlorotannin from Ascophyllum nodosum

Author:

Bai Ying,Li Xueting,Xie Yuqianqian,Wang Yingzhen,Dong Xiuping,Qi Hang

Abstract

IntroductionPhycocyanin offers advantageous biological effects, including immune-regulatory, anticancer, antioxidant, and anti-inflammation capabilities. While PC, as a natural pigment molecule, is different from synthetic pigment, it can be easily degradable under high temperature and light conditions.MethodsIn this work, the impact of ultrasound treatment on the complex of PC and phlorotannin structural and functional characteristics was carefully investigated. The interaction between PC and phlorotannin after ultrasound treatment was studied by UV–Vis, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, fourier transform infrared (FTIR) spectroscopy. Additionally, the antioxidant potential and in vitro digestibility of the complexes were assessed.ResultsThe result was manifested as the UV–Vis spectrum reduction effect, fluorescence quenching effect and weak conformational change of the CD spectrum of PC. PC was identified as amorphous based on the X-ray diffraction (XRD) data and that phlorotannin was embedded into the PC matrix. The differential scanning calorimetry (DSC) results showed that ultrasound treatment and the addition of phlorotannin could improve the denaturation peak temperatures (Td) of PC to 78.7°C. In vitro digestion and free radical scavenging experiments showed that appropriate ultrasound treatment and the addition of phlorotannin were more resistant to simulated gastrointestinal conditions and could improve DPPH and ABTS+ free radical scavenging performance.DiscussionUltrasound treatment and the addition of phlorotannin changed the structural and functional properties of PC. These results demonstrated the feasibility of ultrasound-assisted phlorotannin from A. nodosum in improving the functional properties of PC and provided a possibility for the application of PC-polyphenol complexes as functional food ingredients or as bioactive materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3