To Estimate Performance of Artificial Neural Network Model Based on Terahertz Spectrum: Gelatin Identification as an Example

Author:

Li Yizhang,Liu Lingyu,Wang Zhongmin,Chang Tianying,Li Ke,Xu Wenqing,Wu Yong,Yang Hua,Jiang Daoli

Abstract

It is a necessity to determine significant food or traditional Chinese medicine (TCM) with low cost, which is more likely to achieve high accurate identification by THz-TDS. In this study, feedforward neural networks based on terahertz spectra are employed to predict the animal origin of gelatins, whose adaption to the mission is examined by parallel models built by random sample partition and initialization. It is found that the generalization performance of feedforward ANNs in original data is not satisfactory although prediction on trained samples can be accurate. A multivariate scattering correction is conducted to enhance prediction accuracy, and 20 additional models verify the effectiveness of such dispose. A special partition of total dataset is conducted based on statistics of parallel models, whose influence on ANN performance is investigated with another 20 models. The performance of the models is unsatisfactory because of notable differences in training and test sets according to principal component analysis. By comparing the distribution of the first two principal components before and after multivariate scattering correction, we found that the reciprocal of the minimum number of line segments required for error-free classification in 2-D feature space can be viewed as an index to describe linear separability of data. The rise of proposed linear separability would have a lower requirement for harsh parameter tuning of ANN models and tolerate random initialization. The difference in principal components of samples between a training set and a data set determines whether partition is acceptable or whether a model would have generality. A rapid way to estimate the performance of an ANN before sufficient tuning on a classification mission is to compare differences between groups and differences within groups. Given that a representative peak missing curve is discussed in this article, an analysis based on gelatin THz spectra may be helpful for studies on some other feature-less species.

Funder

Major Scientific and Technological Innovation Project of Shandong Province

Shandong Academy of Sciences

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3