Heat pulse velocity method for determining water requirements in rainfed sweet cherry trees (Prunus avium L.)

Author:

Tharaga Phumudzo C.,Tesfuhuney Weldemichael A.,Coetzer Gesine M.,Savage Michael J.

Abstract

It is imperative to possess a comprehensive understanding of the water consumption patterns of sweet cherry trees under rainfed conditions. This study investigates the water use of sweet cherry using the heat pulse velocity sap flow method. Tree response to drying soil conditions over two consecutive measurement periods (September 2017 to December 2018) in the eastern Free State, South Africa, is also evaluated. During the post-harvest period (December), there was a continuous increase in daily water consumption by trees, in conjunction with an increase in canopy cover, even though the crop load was reduced. Measured sap flow was positively correlated to net radiation, air temperature, and water vapour pressure deficit. The transpiration rates ranged from 1.2 to 3.5 L d-1 during the flowering stage (day of year, DOY, 244 – 270) and showed an increasing trend as the days progressed. During the ripening stage (DOY 271 – 292), transpiration rates decreased from 4.5 to 1.1 L d-1 over the 2018 season. This decreasing trend from the previous growth stage was due to soil drying and scorching weather conditions that led to trees experiencing water stress. Sap flow measurements, however, showed typical characteristics of the diurnal trend during selected days during varying weather conditions. The fraction of transpirable soil water (FTSW) threshold varied for different fruit growth stages and approached 1.0 for different stress levels. FTSW exceeded 0.4 when sweet cherry trees utilised stored soil water, while the transpiration rates declined during prolonged hot days. Moreover, the stress coefficient factor ranged between 0.45 – 0.65 for different growth stages. The daily soil water content varied, and soil evaporation was expected to increase during hot and dry days. In the early stage of a dry spell, soil water content did not directly affect the transpiration rate. Sweet cherry trees are susceptible to soil water deficit at different stages of fruit development. More research is required to understand transpiration as an irrigation management and planning indicator.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3