Comparison of the salt resistance of Solanum lycopersicum x Solanum chilense hybrids and their parents

Author:

Bigot Servane,Leclef Claire,Rosales Camila,Martínez Juan-Pablo,Lutts Stanley,Quinet Muriel

Abstract

IntroductionSoil salinization is a major global problem. Tomato (Solanum lycopersicum) is one of the main crops produced in the world and is cultivated in areas affected by salinity. However, it is considered as a glycophyte species and is sensitive to salt stress. Solanum chilense is a wild tomato native to the Atacama Desert and is therefore adapted to harsh environmental conditions, including salinity. It is considered as a promising source of genes for tomato improvement. However, the physiology of abiotic stress resistance remains largely unknown in S. chilense and no studies have investigated the resistance of S. lycopersicum x S. chilense interspecific hybrids and the potential value of their use in harsh environments.MethodsIn this study, we compared the salt (0 vs. 100 mM NaCl) resistance of S. lycopersicum, S. chilense and their hybrids at vegetative and reproductive stages.ResultsOverall, hybrids showed an intermediate behavior between their parents and a higher salt resistance than S. lycopersicum. Their physiological behavior toward salt stress was sometimes closed to S. lycopersicum and sometimes closed to S. chilense. Their sodium accumulation was intermediate between parents, with a sodium concentration closer to S. lycopersicum than S. chilense in roots, but with an aerial concentration closer to S. chilense than to S. lycopersicum. In inflorescences and fruits, the sodium concentration of hybrids was closer to S. lycopersicum than to S. chilense. Despite a decrease in instantaneous transpiration, the photosynthetic nitrogen use efficiency of hybrids was not decreased by salt stress: our results suggest a greater tolerance to the osmotic phase of salt stress in hybrids compared to the parents. Regarding the reproductive stage, inflorescence production and fruit quality were not affected by salt in hybrids.DiscussionThis study highlights the potential use of hybrids in improving tomato for salt stress resistance.

Funder

Fonds De La Recherche Scientifique - FNRS

Wallonie-Bruxelles International

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3