A novel encoding element for robust pose estimation using planar fiducials

Author:

Rijlaarsdam David D. W.,Zwick Martin,Kuiper J.M. (Hans)

Abstract

Pose estimation in robotics is often achieved using images from known and purposefully applied markers or fiducials taken by a monocular camera. This low-cost system architecture can provide accurate and precise pose estimation measurements. However, to prevent the restriction of robotic movement and occlusions of features, the fiducial markers are often planar. While numerous planar fiducials exist, the performance of these markers suffers from pose ambiguities and loss of precision under frontal observations. These issues are most prevalent in systems with less-than-ideal specifications such as low-resolution detectors, low field of view optics, far-range measurements etc. To mitigate these issues, encoding markers have been proposed in literature. These markers encode an extra dimension of information in the signal between marker and sensor, thus increasing the robustness of the pose solution. In this work, we provide a survey of these encoding markers and show that existing solutions are complex, require optical elements and are not scalable. Therefore, we present a novel encoding element based on the compound eye of insects such as the Mantis. The encoding element encodes a virtual point in space in its signal without the use of optical elements. The features provided by the encoding element are mathematically equivalent to those of a protrusion. Where existing encoding fiducials require custom software, the projected virtual point can be used with standard pose solving algorithms. The encoding element is simple, can be produced using a consumer 3D printer and is fully scalable. The end-to-end implementation of the encoding element proposed in this work significantly increases the pose estimation performance of existing planar fiducials, enabling robust pose estimation for robotic systems.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference36 articles.

1. Accuracy in optical tracking with fiducial markers: An accuracy function for artoolkit;Abawi,2004

2. Prosilica gt 4096 nir datasheet version 1.1.4;Allied Vision,2021

3. Stag: A stable fiducial marker system;Benligiray;Image Vis. Comput.,2019

4. U.S. Patent 4166699 Device for optic, preferably visual determination of a certain plane;Bergkvist,1979

5. New devices for 3d pose estimation: Mantis eyes, agam paintings, sundials, and other space fiducials;Bruckstein;Int. J. Comput. Vis.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3