A Modular Digital Twinning Framework for Safety Assurance of Collaborative Robotics

Author:

Douthwaite J.A.,Lesage B.,Gleirscher M.,Calinescu R.,Aitken J. M.,Alexander R.,Law J.

Abstract

Digital twins offer a unique opportunity to design, test, deploy, monitor, and control real-world robotic processes. In this paper we present a novel, modular digital twinning framework developed for the investigation of safety within collaborative robotic manufacturing processes. The modular architecture supports scalable representations of user-defined cyber-physical environments, and tools for safety analysis and control. This versatile research tool facilitates the creation of mixed environments of Digital Models, Digital Shadows, and Digital Twins, whilst standardising communication and physical system representation across different hardware platforms. The framework is demonstrated as applied to an industrial case-study focused on the safety assurance of a collaborative robotic manufacturing process. We describe the creation of a digital twin scenario, consisting of individual digital twins of entities in the manufacturing case study, and the application of a synthesised safety controller from our wider work. We show how the framework is able to provide adequate evidence to virtually assess safety claims made against the safety controller using a supporting validation module and testing strategy. The implementation, evidence and safety investigation is presented and discussed, raising exciting possibilities for the use of digital twins in robotic safety assurance.

Funder

Lloyd’s Register

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference41 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twins for hand gesture-guided human-robot collaboration systems;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-01-09

2. Digital twin for human-robot collaboration enhancement in manufacturing systems: Literature review and direction for future developments;Computers & Industrial Engineering;2024-01

3. A Framework for Verifying the Collision Freeness of Collaborative Robots (Work in Progress);iFM 2023;2023-11-06

4. Real-time terrain anomaly perception for safe robot locomotion using a digital double framework;Robotics and Autonomous Systems;2023-11

5. Building Digital Twin of Mobile Robotics Testbed Using Centralized Localization System;2023 11th International Conference on Control, Mechatronics and Automation (ICCMA);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3