How to be Helpful? Supportive Behaviors and Personalization for Human-Robot Collaboration

Author:

Mangin Olivier,Roncone Alessandro,Scassellati Brian

Abstract

The field of Human-Robot Collaboration (HRC) has seen a considerable amount of progress in recent years. Thanks in part to advances in control and perception algorithms, robots have started to work in increasingly unstructured environments, where they operate side by side with humans to achieve shared tasks. However, little progress has been made toward the development of systems that are truly effective in supporting the human, proactive in their collaboration, and that can autonomously take care of part of the task. In this work, we present a collaborative system capable of assisting a human worker despite limited manipulation capabilities, incomplete model of the task, and partial observability of the environment. Our framework leverages information from a high-level, hierarchical model that is shared between the human and robot and that enables transparent synchronization between the peers and mutual understanding of each other’s plan. More precisely, we firstly derive a partially observable Markov model from the high-level task representation; we then use an online Monte-Carlo solver to compute a short-horizon robot-executable plan. The resulting policy is capable of interactive replanning on-the-fly, dynamic error recovery, and identification of hidden user preferences. We demonstrate that the system is capable of robustly providing support to the human in a realistic furniture construction task.

Funder

Office of Naval Research

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference42 articles.

1. Mixed-initiative Interaction;Allen;IEEE Intell. Syst.,1999

2. The OpenCV Library;Bradski;Dr. Dobb’s J. Softw. Tools,2000

3. Situated Human–Robot Collaboration: Predicting Intent from Grounded Natural Language;Brawer,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Pattern-Based Conventions for Predictable Planning in Human-Robot Collaboration;ACM Transactions on Human-Robot Interaction;2024-07

2. A Concise Overview of Safety Aspects in Human-Robot Interaction;Springer Proceedings in Advanced Robotics;2024

3. Towards human–robot collaboration in construction: current cobot trends and forecasts;Construction Robotics;2022-12

4. A Task-related Adaptation in Intelligent Human-Machine Interfaces;2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES);2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3