Autonomous ultrasound scanning robotic system based on human posture recognition and image servo control: an application for cardiac imaging

Author:

Tang Xiuhong,Wang Hongbo,Luo Jingjing,Jiang Jinlei,Nian Fan,Qi Lizhe,Sang Lingfeng,Gan Zhongxue

Abstract

In traditional cardiac ultrasound diagnostics, the process of planning scanning paths and adjusting the ultrasound window relies solely on the experience and intuition of the physician, a method that not only affects the efficiency and quality of cardiac imaging but also increases the workload for physicians. To overcome these challenges, this study introduces a robotic system designed for autonomous cardiac ultrasound scanning, with the goal of advancing both the degree of automation and the quality of imaging in cardiac ultrasound examinations. The system achieves autonomous functionality through two key stages: initially, in the autonomous path planning stage, it utilizes a camera posture adjustment method based on the human body’s central region and its planar normal vectors to achieve automatic adjustment of the camera’s positioning angle; precise segmentation of the human body point cloud is accomplished through efficient point cloud processing techniques, and precise localization of the region of interest (ROI) based on keypoints of the human body. Furthermore, by applying isometric path slicing and B-spline curve fitting techniques, it independently plans the scanning path and the initial position of the probe. Subsequently, in the autonomous scanning stage, an innovative servo control strategy based on cardiac image edge correction is introduced to optimize the quality of the cardiac ultrasound window, integrating position compensation through admittance control to enhance the stability of autonomous cardiac ultrasound imaging, thereby obtaining a detailed view of the heart’s structure and function. A series of experimental validations on human and cardiac models have assessed the system’s effectiveness and precision in the correction of camera pose, planning of scanning paths, and control of cardiac ultrasound imaging quality, demonstrating its significant potential for clinical ultrasound scanning applications.

Publisher

Frontiers Media SA

Reference33 articles.

1. Confidence-driven control of an ultrasound probe: target-specific acoustic window optimization;Chatelain,2016

2. Confidence-driven control of an ultrasound probe;Chatelain;Ieee T Robot.,2017

3. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation ChengB. XiaoB. WangJ. ShiH. HuangT. S. ZhangL. 2020

4. Assisted probe guidance in cardiac ultrasound: a review;Ferraz;Front. Cardiovasc Med.,2023

5. Robotic ultrasound trajectory planning for volume of interest coverage;Graumann,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3