Author:
Piercy Thomas,Herrmann Guido,Cangelosi Angelo,Zoulias Ioannis Dimitrios,Lopez Erwin
Abstract
In current telerobotics and telemanipulator applications, operators must perform a wide variety of tasks, often with a high risk associated with failure. A system designed to generate data-based behavioural estimations using observed operator features could be used to reduce risks in industrial teleoperation. This paper describes a non-invasive bio-mechanical feature capture method for teleoperators used to trial novel human-error rate estimators which, in future work, are intended to improve operational safety by providing behavioural and postural feedback to the operator. Operator monitoring studies were conducted in situ using the MASCOT teleoperation system at UKAEA RACE; the operators were given controlled tasks to complete during observation. Building upon existing works for vehicle-driver intention estimation and robotic surgery operator analysis, we used 3D point-cloud data capture using a commercially available depth camera to estimate an operator’s skeletal pose. A total of 14 operators were observed and recorded for a total of approximately 8 h, each completing a baseline task and a task designed to induce detectable but safe collisions. Skeletal pose was estimated, collision statistics were recorded, and questionnaire-based psychological assessments were made, providing a database of qualitative and quantitative data. We then trialled data-driven analysis by using statistical and machine learning regression techniques (SVR) to estimate collision rates. We further perform and present an input variable sensitivity analysis for our selected features.
Funder
EUROfusion
Engineering and Physical Sciences Research Council
Reference39 articles.
1. Realistic posture prediction for maximum dexterity;Abdel-Malek;SAE Trans.,2001
2. Theoretical foundations of the potential function method in pattern recognition learning;Aizerman;Automation Remote Control,1964
3. Head pose and movement analysis as an indicator of depression;Alghowinem,2013
4. Complex network-based features extraction in rgb-d human action recognition;Barkoky;J. Vis. Commun. Image Represent.,2022
5. Posture, postural discomfort, and performance;Bhatnager;Hum. Factors,1985
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献