Learning State-Variable Relationships in POMCP: A Framework for Mobile Robots

Author:

Zuccotto Maddalena,Piccinelli Marco,Castellini Alberto,Marchesini Enrico,Farinelli Alessandro

Abstract

We address the problem of learning relationships on state variables in Partially Observable Markov Decision Processes (POMDPs) to improve planning performance. Specifically, we focus on Partially Observable Monte Carlo Planning (POMCP) and represent the acquired knowledge with a Markov Random Field (MRF). We propose, in particular, a method for learning these relationships on a robot as POMCP is used to plan future actions. Then, we present an algorithm that deals with cases in which the MRF is used on episodes having unlikely states with respect to the equality relationships represented by the MRF. Our approach acquires information from the agent’s action outcomes to adapt online the MRF if a mismatch is detected between the MRF and the true state. We test this technique on two domains, rocksample, a standard rover exploration task, and a problem of velocity regulation in industrial mobile robotic platforms, showing that the MRF adaptation algorithm improves the planning performance with respect to the standard approach, which does not adapt the MRF online. Finally, a ROS-based architecture is proposed, which allows running the MRF learning, the MRF adaptation, and MRF usage in POMCP on real robotic platforms. In this case, we successfully tested the architecture on a Gazebo simulator of rocksample. A video of the experiments is available in the Supplementary Material, and the code of the ROS-based architecture is available online.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference61 articles.

1. Learning Factor Graphs in Polynomial Time and Sample Complexity;Abbeel;J. Mach. Learn. Res.,2006

2. Scalable Planning and Learning for Multiagent POMDPs;Amato,2015

3. A Pomdp Extension with Belief-dependent Rewards;Araya,2010

4. A Bayesian Method for Learning Pomdp Observation Parameters for Robot Interaction Management Systems;Atrash,2010

5. Efficiency of Pseudolikelihood Estimation for Simple Gaussian Fields;Besag;Biometrika,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3