Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers

Author:

Tsinganos Konstantinos,Chatzilygeroudis Konstantinos,Hadjivelichkov Denis,Komninos Theodoros,Dermatas Evangelos,Kanoulas Dimitrios

Abstract

Multi-stage tasks are a challenge for reinforcement learning methods, and require either specific task knowledge (e.g., task segmentation) or big amount of interaction times to be learned. In this paper, we propose Behavior Policy Learning (BPL) that effectively combines 1) only few solution sketches, that is demonstrations without the actions, but only the states, 2) model-based controllers, and 3) simulations to effectively solve multi-stage tasks without strong knowledge about the underlying task. Our main intuition is that solution sketches alone can provide strong data for learning a high-level trajectory by imitation, and model-based controllers can be used to follow this trajectory (we call it behavior) effectively. Finally, we utilize robotic simulations to further improve the policy and make it robust in a Sim2Real style. We evaluate our method in simulation with a robotic manipulator that has to perform two tasks with variations: 1) grasp a box and place it in a basket, and 2) re-place a book on a different level within a bookcase. We also validate the Sim2Real capabilities of our method by performing real-world experiments and realistic simulated experiments where the objects are tracked through an RGB-D camera for the first task.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference46 articles.

1. An invitation to imitation;Bagnell,2015

2. Neural dynamic policies for end-to-end sensorimotor learning;Bahl,2020

3. Robot programming by demonstration;Billard,2008

4. Using parameterized black-box priors to scale up model-based policy search for robotics;Chatzilygeroudis,2018

5. Black-box data-efficient policy search for robotics;Chatzilygeroudis,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolving Dynamic Locomotion Policies in Minutes;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

2. Effective Skill Learning via Autonomous Goal Representation Learning;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3