Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: A validation study

Author:

van Dellen Florian,Hesse Nikolas,Labruyère Rob

Abstract

Introduction: Measuring kinematic behavior during robot-assisted gait therapy requires either laborious set up of a marker-based motion capture system or relies on the internal sensors of devices that may not cover all relevant degrees of freedom. This presents a major barrier for the adoption of kinematic measurements in the normal clinical schedule. However, to advance the field of robot-assisted therapy many insights could be gained from evaluating patient behavior during regular therapies.Methods: For this reason, we recently developed and validated a method for extracting kinematics from recordings of a low-cost RGB-D sensor, which relies on a virtual 3D body model to estimate the patient’s body shape and pose in each frame. The present study aimed to evaluate the robustness of the method to the presence of a lower limb exoskeleton. 10 healthy children without gait impairment walked on a treadmill with and without wearing the exoskeleton to evaluate the estimated body shape, and 8 custom stickers were placed on the body to evaluate the accuracy of estimated poses.Results & Conclusion: We found that the shape is generally robust to wearing the exoskeleton, and systematic pose tracking errors were around 5 mm. Therefore, the method can be a valuable measurement tool for the clinical evaluation, e.g., to measure compensatory movements of the trunk.

Funder

Schweizerische Stiftung für das Cerebral Gelähmte Kind

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference18 articles.

1. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study;Aurich-Schuler;J. Neuroeng Rehabil. [Internet,2019

2. Azure Kinect DK2022

3. Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment;Barrios;J. Biomech.,2010

4. Managing variability in the summary and comparison of gait data;Chau;J. Neuroeng. Rehabil.,2005

5. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation;Collantes,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3