Speech Interaction to Control a Hands-Free Delivery Robot for High-Risk Health Care Scenarios

Author:

Grasse Lukas,Boutros Sylvain J.,Tata Matthew S.

Abstract

The Covid-19 pandemic has had a widespread effect across the globe. The major effect on health-care workers and the vulnerable populations they serve has been of particular concern. Near-complete lockdown has been a common strategy to reduce the spread of the pandemic in environments such as live-in care facilities. Robotics is a promising area of research that can assist in reducing the spread of covid-19, while also preventing the need for complete physical isolation. The research presented in this paper demonstrates a speech-controlled, self-sanitizing robot that enables the delivery of items from a visitor to a resident of a care facility. The system is automated to reduce the burden on facility staff, and it is controlled entirely through hands-free audio interaction in order to reduce transmission of the virus. We demonstrate an end-to-end delivery test, and an in-depth evaluation of the speech interface. We also recorded a speech dataset with two conditions: the talker wearing a face mask and the talker not wearing a face mask. We then used this dataset to evaluate the speech recognition system. This enabled us to test the effect of face masks on speech recognition interfaces in the context of autonomous systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Government of Alberta

Alberta Innovates - Technology Futures

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference29 articles.

1. Orbbec astra specifications AstraO. 2020

2. Map server package Brian GerkeyT. P. 2020

3. Evaluation of an ultraviolet c (uvc) light-emitting device for disinfection of high touch surfaces in hospital critical areas;Casini;Int. J. Environ. Res. Public Health,2019

4. Vosk offline speech recognition API CepheiA. 2020

5. Acoustic effects of medical, cloth, and transparent face masks on speech signals;Corey;J. Acous. Soc. America,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3