Author:
Jia Chengzhe,Ramanarayanan Sankaran,Sanchez Antonio L.,Tolley Michael T.
Abstract
Robots capable of generating adhesion forces that can achieve free movement in application environments while overcoming their own gravity are a subject of interest for researchers. A robot with controllable adhesion could be useful in many engineered systems. Materials processing equipment, robots that climb walls, and pick-and-place machines are some examples. However, most adhesion methods either require a large energy supply system or are limited by the properties of the contact plane. For example, electromagnetic adhesion requires a ferromagnetic surface and pneumatic adhesion requires a flat surface. Furthermore, nearly all existing approaches are only used to generate adhesion forces and often require additional mechanisms to remove the adhesive component from the surface. In this study, we aimed to develop a simpler method of adhering to a surface while simultaneously moving in directions parallel to the surface, using multiple vibration sources to generate normal adhesion and propulsion. To test our approach, we constructed circular and elliptical models and conducted experiments with various inputs and model parameters. Our results show that such a gas-lubricated adhesive disk could achieve adhesive rotation and displacement in the plane without requiring any auxiliary operating system. Using only vibration sources, we were able to generate the necessary adhesion and propulsion forces to achieve the desired motion of the robot. This work represents a step towards the construction of a small-sized tetherless robot that can overcome gravity and move freely in a general environment.
Subject
Artificial Intelligence,Computer Science Applications
Reference34 articles.
1. A survey on pneumatic wall-climbing robots for inspection;Brusell,2016
2. Apparatus and method for orthosonic lift by deflection;Colasante;U. S. Pat.,2015
3. Robots for environmental monitoring: significant advancements and applications;Dunbabin;IEEE Robotics Automation Mag.,2012
4. Advances in climbing robots for vertical structures in the past decade: a review;Fang;Biomimetics,2023