Introducing a Smart City Component in a Robotic Competition: A Field Report

Author:

Bardaro Gianluca,Daga Enrico,Carvalho Jason,Chiatti Agnese,Motta Enrico

Abstract

In recent years, two fields have become more prominent in our everyday life: smart cities and service robots. In a smart city, information is collected from distributed sensors around the city into centralised data hubs and used to improve the efficiency of the city systems and provide better services to citizens. Exploiting major advances in Computer Vision and Machine Learning, service robots have evolved from performing simple tasks to playing the role of hotel concierges, museum guides, waiters in cafes and restaurants, home assistants, automated delivery drones, and more. As digital agents, robots can be prime members of the smart city vision. On the one hand, smart city data can be accessed by robots to gain information that is relevant to the task in hand. On the other hand, robots can act as mobile sensors and actuators on behalf of the smart city, thus contributing to the data acquisition process. However, the connection between service robots and smart cities is surprisingly under-explored. In an effort to stimulate advances on the integration between robots and smart cities, we turned to robot competitions and hosted the first Smart Cities Robotics Challenge (SciRoc). The contest included activities specifically designed to require cooperation between robots and the MK Data Hub, a Smart City data infrastructure. In this article, we report on the competition held in Milton Keynes (UK) in September 2019, focusing in particular on the role played by the MK Data Hub in simulating a Smart City Data Infrastructure for service robots. Additionally, we discuss the feedback we received from the various people involved in the SciRoc Challenge, including participants, members of the public and organisers, and summarise the lessons learnt from this experience.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3