A perspective on large-scale simulation as an enabler for novel biorobotics applications

Author:

Angelidis Emmanouil

Abstract

Our understanding of the complex mechanisms that power biological intelligence has been greatly enhanced through the explosive growth of large-scale neuroscience and robotics simulation tools that are used by the research community to perform previously infeasible experiments, such as the simulation of the neocortex’s circuitry. Nevertheless, simulation falls far from being directly applicable to biorobots due to the large discrepancy between the simulated and the real world. A possible solution for this problem is the further enhancement of existing simulation tools for robotics, AI and neuroscience with multi-physics capabilities. Previously infeasible or difficult to simulate scenarios, such as robots swimming on the water surface, interacting with soft materials, walking on granular materials etc., would be rendered possible within a multi-physics simulation environment designed for robotics. In combination with multi-physics simulation, large-scale simulation tools that integrate multiple simulation modules in a closed-loop manner help address fundamental questions around the organization of neural circuits and the interplay between the brain, body and environment. We analyze existing designs for large-scale simulation running on cloud and HPC infrastructure as well as their shortcomings. Based on this analysis we propose a next-gen modular architecture design based on multi-physics engines, that we believe would greatly benefit biorobotics and AI.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference34 articles.

1. Experimental and computational study on motor control and recovery after stroke: toward a constructive loop between experimental and virtual embodied neuroscience;Allegra Mascaro;Front. Syst. Neurosci.,2020

2. Gazebo fluids: SPH-Based simulation of fluid interaction with articulated rigid body dynamics;Angelidis,2022

3. A spiking central pattern generator for the control of a simulated lamprey robot running on SpiNNaker and Loihi neuromorphic boards;Angelidis;Neuromorphic Comput. Eng.,2021

4. Nengo: A Python tool for building large-scale functional brain models;Bekolay;Front. Neuroinformatics,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3