Event-based feature tracking in a visual inertial odometry framework

Author:

Ribeiro-Gomes José,Gaspar José,Bernardino Alexandre

Abstract

Introduction: Event cameras report pixel-wise brightness changes at high temporal resolutions, allowing for high speed tracking of features in visual inertial odometry (VIO) estimation, but require a paradigm shift, as common practices from the past decades using conventional cameras, such as feature detection and tracking, do not translate directly. One method for feature detection and tracking is the Eventbased Kanade-Lucas-Tomasi tracker (EKLT), an hybrid approach that combines frames with events to provide a high speed tracking of features. Despite the high temporal resolution of the events, the local nature of the registration of features imposes conservative limits to the camera motion speed.Methods: Our proposed approach expands on EKLT by relying on the concurrent use of the event-based feature tracker with a visual inertial odometry system performing pose estimation, leveraging frames, events and Inertial Measurement Unit (IMU) information to improve tracking. The problem of temporally combining high-rate IMU information with asynchronous event cameras is solved by means of an asynchronous probabilistic filter, in particular an Unscented Kalman Filter (UKF). The proposed method of feature tracking based on EKLT takes into account the state estimation of the pose estimator running in parallel and provides this information to the feature tracker, resulting in a synergy that can improve not only the feature tracking, but also the pose estimation. This approach can be seen as a feedback, where the state estimation of the filter is fed back into the tracker, which then produces visual information for the filter, creating a “closed loop”.Results: The method is tested on rotational motions only, and comparisons between a conventional (not event-based) approach and the proposed approach are made, using synthetic and real datasets. Results support that the use of events for the task improve performance.Discussion: To the best of our knowledge, this is the first work proposing the fusion of visual with inertial information using events cameras by means of an UKF, as well as the use of EKLT in the context of pose estimation. Furthermore, our closed loop approach proved to be an improvement over the base EKLT, resulting in better feature tracking and pose estimation. The inertial information, despite prone to drifting over time, allows keeping track of the features that would otherwise be lost. Then, feature tracking synergically helps estimating and minimizing the drift.

Funder

Instituto Superior Técnico

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference27 articles.

1. Real-time high speed motion prediction using fast aperture-robust event-driven visual flow;Akolkar,2018

2. A novel feedback mechanism-based stereo visual-inertial slam;Bai;IEEE Access,2019

3. Associating uncertainty with three-dimensional poses for use in estimation problems;Barfoot;IEEE Trans. Robotics,2014

4. Unscented Kalman filtering on Lie groups for fusion of IMU and monocular vision;Brossard,2017

5. Stereo visual inertial pose estimation based on feedforward-feedback loops;Chen,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3