Author:
Jiang Chao,Huang Xinchi,Guo Yi
Abstract
Multi-robot cooperative control has been extensively studied using model-based distributed control methods. However, such control methods rely on sensing and perception modules in a sequential pipeline design, and the separation of perception and controls may cause processing latencies and compounding errors that affect control performance. End-to-end learning overcomes this limitation by implementing direct learning from onboard sensing data, with control commands output to the robots. Challenges exist in end-to-end learning for multi-robot cooperative control, and previous results are not scalable. We propose in this article a novel decentralized cooperative control method for multi-robot formations using deep neural networks, in which inter-robot communication is modeled by a graph neural network (GNN). Our method takes LiDAR sensor data as input, and the control policy is learned from demonstrations that are provided by an expert controller for decentralized formation control. Although it is trained with a fixed number of robots, the learned control policy is scalable. Evaluation in a robot simulator demonstrates the triangular formation behavior of multi-robot teams of different sizes under the learned control policy.
Subject
Artificial Intelligence,Computer Science Applications
Reference38 articles.
1. Learning transferable cooperative behavior in multi-agent teams;Agarwal,2020
2. Robust formation control for multiple underwater vehicles;Bechlioulis;Front. Robotics AI,2019
3. A framework for real-world multi-robot systems running decentralized gnn-based policies;Blumenkamp,2022
4. Distance-based formation control of a three-robot system;Chen,2019
5. Coordinated control of multi-robot systems: a survey;Cortés;SICE J. Control, Meas. Syst. Integration,2017