A 3D Printed Modular Soft Gripper Integrated With Metamaterials for Conformal Grasping

Author:

Tawk Charbel,Mutlu Rahim,Alici Gursel

Abstract

A single universal robotic gripper with the capacity to fulfill a wide variety of gripping and grasping tasks has always been desirable. A three-dimensional (3D) printed modular soft gripper with highly conformal soft fingers that are composed of positive pressure soft pneumatic actuators along with a mechanical metamaterial was developed. The fingers of the soft gripper along with the mechanical metamaterial, which integrates a soft auxetic structure and compliant ribs, was 3D printed in a single step, without requiring support material and postprocessing, using a low-cost and open-source fused deposition modeling (FDM) 3D printer that employs a commercially available thermoplastic poly (urethane) (TPU). The soft fingers of the gripper were optimized using finite element modeling (FEM). The FE simulations accurately predicted the behavior and performance of the fingers in terms of deformation and tip force. Also, FEM was used to predict the contact behavior of the mechanical metamaterial to prove that it highly decreases the contact pressure by increasing the contact area between the soft fingers and the grasped objects and thus proving its effectiveness in enhancing the grasping performance of the gripper. The contact pressure can be decreased by up to 8.5 times with the implementation of the mechanical metamaterial. The configuration of the highly conformal gripper can be easily modulated by changing the number of fingers attached to its base to tailor it for specific manipulation tasks. Two-dimensional (2D) and 3D grasping experiments were conducted to assess the grasping performance of the soft modular gripper and to prove that the inclusion of the metamaterial increases its conformability and reduces the out-of-plane deformations of the soft monolithic fingers upon grasping different objects and consequently, resulting in the gripper in three different configurations including two, three and four-finger configurations successfully grasping a wide variety of objects.

Funder

University of Wollongong

Centre of Excellence for Electromaterials Science, Australian Research Council

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3