Author:
Edwards S.,Zhang R.,Worley R.,Mihaylova L.,Aitken J.,Anderson S. R.
Abstract
Buried sewer pipe networks present many challenges for robot localization systems, which require non-standard solutions due to the unique nature of these environments: they cannot receive signals from global positioning systems (GPS) and can also lack visual features necessary for standard visual odometry algorithms. In this paper, we exploit the fact that pipe joints are equally spaced and develop a robot localization method based on pipe joint detection that operates in one degree-of-freedom along the pipe length. Pipe joints are detected in visual images from an on-board forward facing (electro-optical) camera using a bag-of-keypoints visual categorization algorithm, which is trained offline by unsupervised learning from images of sewer pipe joints. We augment the pipe joint detection algorithm with drift correction using vision-based manhole recognition. We evaluated the approach using real-world data recorded from three sewer pipes (of lengths 30, 50 and 90 m) and benchmarked against a standard method for visual odometry (ORB-SLAM3), which demonstrated that our proposed method operates more robustly and accurately in these feature-sparse pipes: ORB-SLAM3 completely failed on one tested pipe due to a lack of visual features and gave a mean absolute error in localization of approximately 12%–20% on the other pipes (and regularly lost track of features, having to re-initialize multiple times), whilst our method worked successfully on all tested pipes and gave a mean absolute error in localization of approximately 2%–4%. In summary, our results highlight an important trade-off between modern visual odometry algorithms that have potentially high precision and estimate full six degree-of-freedom pose but are potentially fragile in feature sparse pipes, versus simpler, approximate localization methods that operate in one degree-of-freedom along the pipe length that are more robust and can lead to substantial improvements in accuracy.
Funder
Engineering and Physical Sciences Research Council
Subject
Artificial Intelligence,Computer Science Applications
Reference52 articles.
1. A laser scanner for landmark detection with the sewer inspection robot KANTARO;Ahrary,2006
2. Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: A review;Aitken;IEEE Access,2021
3. Inertial navigation system of pipeline inspection gauge;Al-Masri;IEEE Trans. Control Syst. Technol.,2020
4. A robust localization system for inspection robots in sewer networks;Alejo;Sensors,2019
5. RGBD-based robot localization in sewer networks;Alejo,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献