Root Systems Research for Bioinspired Resilient Design: A Concept Framework for Foundation and Coastal Engineering

Author:

Stachew Elena,Houette Thibaut,Gruber Petra

Abstract

The continuous increase in population and human migration to urban and coastal areas leads to the expansion of built environments over natural habitats. Current infrastructure suffers from environmental changes and their impact on ecosystem services. Foundations are static anchoring structures dependent on soil compaction, which reduces water infiltration and increases flooding. Coastal infrastructure reduces wave action and landward erosion but alters natural habitat and sediment transport. On the other hand, root systems are multifunctional, resilient, biological structures that offer promising strategies for the design of civil and coastal infrastructure, such as adaptivity, multifunctionality, self-healing, mechanical and chemical soil attachment. Therefore, the biomimetic methodology is employed to abstract root strategies of interest for the design of building foundations and coastal infrastructures that prevent soil erosion, anchor structures, penetrate soils, and provide natural habitat. The strategies are described in a literature review on root biology, then these principles are abstracted from their biological context to show their potential for engineering transfer. After a review of current and developing technologies in both application fields, the abstracted strategies are translated into conceptual designs for foundation and coastal engineering. In addition to presenting the potential of root-inspired designs for both fields, this paper also showcases the main steps of the biomimetic methodology from the study of a biological system to the development of conceptual technical designs. In this way the paper also contributes to the development of a more strategic intersection between biology and engineering and provides a framework for further research and development projects.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference153 articles.

1. Design of Stable In-Channel Wood Debris Structures for Bank Protection and Habitat Restoration: An Example from the Cowlitz River, WA;Abbe,1997

2. Large Woody Debris Jams, Channel Hydraulics and Habitat Formation in Large Rivers;Abbe;Regul. Rivers: Res. Mgmt.,1996

3. Patterns and Processes of Wood Debris Accumulation in the Queets River Basin, Washington;Abbe;Geomorphology,2003

4. Does Soil Compaction Increase Floods? A Review;Alaoui;J. Hydrol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3