Augmented feedback modes during functional grasp training with an intelligent glove and virtual reality for persons with traumatic brain injury

Author:

Liu Mingxiao,Wilder Samuel,Sanford Sean,Glassen Michael,Dewil Sophie,Saleh Soha,Nataraj Raviraj

Abstract

Introduction: Physical therapy is crucial to rehabilitating hand function needed for activities of daily living after neurological traumas such as traumatic brain injury (TBI). Virtual reality (VR) can motivate participation in motor rehabilitation therapies. This study examines how multimodal feedback in VR to train grasp-and-place function will impact the neurological and motor responses in TBI participants (n = 7) compared to neurotypicals (n = 13).Methods: We newly incorporated VR with our existing intelligent glove system to seamlessly enhance the augmented visual and audio feedback to inform participants about grasp security. We then assessed how multimodal feedback (audio plus visual cues) impacted electroencephalography (EEG) power, grasp-and-place task performance (motion pathlength, completion time), and electromyography (EMG) measures.Results: After training with multimodal feedback, electroencephalography (EEG) alpha power significantly increased for TBI and neurotypical groups. However, only the TBI group demonstrated significantly improved performance or significant shifts in EMG activity.Discussion: These results suggest that the effectiveness of motor training with augmented sensory feedback will depend on the nature of the feedback and the presence of neurological dysfunction. Specifically, adding sensory cues may better consolidate early motor learning when neurological dysfunction is present. Computerized interfaces such as virtual reality offer a powerful platform to personalize rehabilitative training and improve functional outcomes based on neuropathology.

Funder

New Jersey Health Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference50 articles.

1. Motion planning and controlling algorithm for grasping and manipulating moving objects in the presence of obstacles;Chaabani;Int. J. Soft Comput. Artif. Intell. Appl.,2014

2. Human balance models optimized using a large-scale, parallel architecture with applications to mild traumatic brain injury;Ciccarelli,2020

3. Long term outcomes after moderate to severe traumatic brain injury;Colantonio;Disabil. Rehabilitation,2004

4. Delivering intensive rehabilitation in stroke: factors influencing implementation;Connell;Phys. Ther.,2018

5. Augmented feedback influences upper limb reaching movement times but does not explain violations of Fitts’ Law;de Grosbois;Front. Psychol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3