Author:
Treers Laura K.,McInroe Benjamin,Full Robert J.,Stuart Hannah S.
Abstract
We present EMBUR—EMerita BUrrowing Robot—the first legged robot inspired by the Pacific mole crab, Emerita analoga, capable of burrowing vertically downward. We choose Emerita analoga as a model organism for its rapid downward burrowing behaviors, as it is four times as fast as the most rapid bivalve mollusk. Vertical burrowing in granular media is a challenging endeavor due to the tendency for the media to create upwards resistive forces on an intruder, even during purely horizontal motions. Our robot is capable of vertically burrowing its body in granular substrate primarily through excavation using two leg pairs, which are functionally analogous to groupings of leg pairs of the mole crab. We implement a novel leg mechanism with a sweeping trajectory, using compliant fabric to enable an anisotropic force response. The maximum resistive force during the power stroke is 6.4 times that of the return stroke. We compare robot body pitch and spatial trajectories with results from biomechanical studies of the mole crabs. We characterize the sensitivity of the robot to initial depth, body pitch and leg pose, and propose bounds on initial conditions which predict various burrowing failure modes. Parametric studies utilizing Granular Resistive Force Theory inform our understanding of robot behavior in response to leg phasing and orientation. Not only does this robotic platform represent the first robophysical model of vertical mole crab-inspired burrowing, it is also one of the first legged, primarily excavative small-scale burrowing agents.
Subject
Artificial Intelligence,Computer Science Applications
Reference55 articles.
1. Surprising simplicity in the modeling of dynamic granular intrusion;Agarwal;Sci. Adv.,2021
2. Mechanistic framework for deriving reduced-order models in soft materials: Application to granular intrusion;Agarwal,2022
3. A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems;Aguilar;Rep. Prog. Phys.,2016
4. Steerable burrowing robot: Design, modeling and experiments;Barenboim,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献