Design Optimization of a Pneumatic Soft Robotic Actuator Using Model-Based Optimization and Deep Reinforcement Learning

Author:

Raeisinezhad Mahsa,Pagliocca Nicholas,Koohbor Behrad,Trkov Mitja

Abstract

We present two frameworks for design optimization of a multi-chamber pneumatic-driven soft actuator to optimize its mechanical performance. The design goal is to achieve maximal horizontal motion of the top surface of the actuator with a minimum effect on its vertical motion. The parametric shape and layout of air chambers are optimized individually with the firefly algorithm and a deep reinforcement learning approach using both a model-based formulation and finite element analysis. The presented modeling approach extends the analytical formulations for tapered and thickened cantilever beams connected in a structure with virtual spring elements. The deep reinforcement learning-based approach is combined with both the model- and finite element-based environments to fully explore the design space and for comparison and cross-validation purposes. The two-chamber soft actuator was specifically designed to be integrated as a modular element into a soft robotic pad system used for pressure injury prevention, where local control of planar displacements can be advantageous to mitigate the risk of pressure injuries and blisters by minimizing shear forces at the skin-pad contact. A comparison of the results shows that designs achieved using the deep reinforcement based approach best decouples the horizontal and vertical motions, while producing the necessary displacement for the intended application. The results from optimizations were compared computationally and experimentally to the empirically obtained design in the existing literature to validate the optimized design and methodology.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modular reconfigurable rotary style soft pneumatic actuators;Sensors and Actuators A: Physical;2024-11

2. A multi-chamber soft robot for transesophageal echocardiography: continuous kinematic matching control of soft medical robots;Biomedical Engineering / Biomedizinische Technik;2024-07-19

3. Mechatronic Design of a Thigh-Buttock Analogue and Instrumented Soft Pad for Pressure Injury Prevention;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

4. Force, Humidity, and Temperature Estimation of a Multi-modal Soft Actuator for Human-Pad Interface;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

5. Quasi-Static Modeling Framework for Soft Bellow-Based Biomimetic Actuators;Biomimetics;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3