Robot tool use: A survey

Author:

Qin Meiying,Brawer Jake,Scassellati Brian

Abstract

Using human tools can significantly benefit robots in many application domains. Such ability would allow robots to solve problems that they were unable to without tools. However, robot tool use is a challenging task. Tool use was initially considered to be the ability that distinguishes human beings from other animals. We identify three skills required for robot tool use: perception, manipulation, and high-level cognition skills. While both general manipulation tasks and tool use tasks require the same level of perception accuracy, there are unique manipulation and cognition challenges in robot tool use. In this survey, we first define robot tool use. The definition highlighted the skills required for robot tool use. The skills coincide with an affordance model which defined a three-way relation between actions, objects, and effects. We also compile a taxonomy of robot tool use with insights from animal tool use literature. Our definition and taxonomy lay a theoretical foundation for future robot tool use studies and also serve as practical guidelines for robot tool use applications. We first categorize tool use based on the context of the task. The contexts are highly similar for the same task (e.g., cutting) innon-causal tool use, while the contexts forcausal tool useare diverse. We further categorize causal tool use based on the task complexity suggested in animal tool use studies intosingle-manipulation tool useandmultiple-manipulation tool use. Single-manipulation tool use are sub-categorized based on tool features and prior experiences of tool use. This type of tool may be considered as building blocks of causal tool use. Multiple-manipulation tool use combines these building blocks in different ways. The different combinations categorize multiple-manipulation tool use. Moreover, we identify different skills required in each sub-type in the taxonomy. We then review previous studies on robot tool use based on the taxonomy and describe how the relations are learned in these studies. We conclude with a discussion of the current applications of robot tool use and open questions to address future robot tool use.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Inherent Representation of Tactile Manipulation Using Unified Force-Impedance Control;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3