Point cloud completion in challenging indoor scenarios with human motion

Author:

Zhang Chengsi,Czarnuch Stephen

Abstract

Combining and completing point cloud data from two or more sensors with arbitrarily relative perspectives in a dynamic, cluttered, and complex environment is challenging, especially when the two sensors have significant perspective differences while the large overlap ratio and feature-rich scene cannot be guaranteed. We create a novel approach targeting this challenging scenario by registering two camera captures in a time series with unknown perspectives and human movements to easily use our system in a real-life scene. In our approach, we first reduce the six unknowns of 3D point cloud completion to three by aligning the ground planes found by our previous perspective-independent 3D ground plane estimation algorithm. Subsequently, we use a histogram-based approach to identify and extract all the humans from each frame generating a three-dimensional (3D) human walking sequence in a time series. To enhance accuracy and performance, we convert 3D human walking sequences to lines by calculating the center of mass (CoM) point of each human body and connecting them. Finally, we match the walking paths in different data trials by minimizing the Fréchet distance between two walking paths and using 2D iterative closest point (ICP) to find the remaining three unknowns in the overall transformation matrix for the final alignment. Using this approach, we can successfully register the corresponding walking path of the human between the two cameras’ captures and estimate the transformation matrix between the two sensors.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference69 articles.

1. Spinnet: Learning a general surface descriptor for 3d point cloud registration;Ao,2021

2. Medical 3d printing cost-savings in orthopedic and maxillofacial surgery: Cost analysis of operating room time saved with 3d printed anatomic models and surgical guides;Ballard;Acad. Radiol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of 3D Point Cloud Completion Networks for High Altitude Lidar Scans of Buildings;Photogrammetric Engineering & Remote Sensing;2024-01-01

2. Survey on learning-based scene extrapolation in robotics;International Journal of Intelligent Robotics and Applications;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3