Automatic selection of coordinate systems for learning relative and absolute spatial concepts

Author:

Sagara Rikunari,Taguchi Ryo,Taniguchi Akira,Taniguchi Tadahiro

Abstract

Robots employed in homes and offices need to adaptively learn spatial concepts using user utterances. To learn and represent spatial concepts, the robot must estimate the coordinate system used by humans. For example, to represent spatial concept “left,” which is one of the relative spatial concepts (defined as a spatial concept depending on the object’s location), humans use a coordinate system based on the direction of a reference object. As another example, to represent spatial concept “living room,” which is one of the absolute spatial concepts (defined as a spatial concept that does not depend on the object’s location), humans use a coordinate system where a point on a map constitutes the origin. Because humans use these concepts in daily life, it is important for the robot to understand the spatial concepts in different coordinate systems. However, it is difficult for robots to learn these spatial concepts because humans do not clarify the coordinate system. Therefore, we propose a method (RASCAM) that enables a robot to simultaneously estimate the coordinate system and spatial concept. The proposed method is based on ReSCAM+O, which is a learning method for relative spatial concepts based on a probabilistic model. The proposed method introduces a latent variable that represents a coordinate system for simultaneous learning. This method can simultaneously estimate three types of unspecified information: coordinate systems, reference objects, and the relationship between concepts and words. No other method can estimate all these three types. Experiments using three different coordinate systems demonstrate that the proposed method can learn both relative and absolute spatial concepts while accurately selecting the coordinate system. The proposed approach can be beneficial for service robots to flexibly understand a new environment through the interactions with humans.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference32 articles.

1. Exchangeability and related topics;Aldous,1985

2. Towards understanding object-directed actions: A generative model for grounding syntactic categories of speech through visual perception;Aly,2018

3. Online learning of concepts and words using multimodal LDA and hierarchical Pitman-Yor Language Model;Araki,2012

4. Space, time, semantics, and the child;Clark,1973

5. Saying, Seeing and Acting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3