Facing the FACS—Using AI to Evaluate and Control Facial Action Units in Humanoid Robot Face Development

Author:

Auflem Marius,Kohtala Sampsa,Jung Malte,Steinert Martin

Abstract

This paper presents a new approach for evaluating and controlling expressive humanoid robotic faces using open-source computer vision and machine learning methods. Existing research in Human-Robot Interaction lacks flexible and simple tools that are scalable for evaluating and controlling various robotic faces; thus, our goal is to demonstrate the use of readily available AI-based solutions to support the process. We use a newly developed humanoid robot prototype intended for medical training applications as a case example. The approach automatically captures the robot’s facial action units through a webcam during random motion, which are components traditionally used to describe facial muscle movements in humans. Instead of manipulating the actuators individually or training the robot to express specific emotions, we propose using action units as a means for controlling the robotic face, which enables a multitude of ways to generate dynamic motion, expressions, and behavior. The range of action units achieved by the robot is thus analyzed to discover its expressive capabilities and limitations and to develop a control model by correlating action units to actuation parameters. Because the approach is not dependent on specific facial attributes or actuation capabilities, it can be used for different designs and continuously inform the development process. In healthcare training applications, our goal is to establish a prerequisite of expressive capabilities of humanoid robots bounded by industrial and medical design constraints. Furthermore, to mediate human interpretation and thus enable decision-making based on observed cognitive, emotional, and expressive cues, our approach aims to find the minimum viable expressive capabilities of the robot without having to optimize for realism. The results from our case example demonstrate the flexibility and efficiency of the presented AI-based solutions to support the development of humanoid facial robots.

Funder

Norges Forskningsråd

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference54 articles.

1. Repetitive Robot Behavior Impacts Perception of Intentionality and Gaze-Related Attentional Orienting;Abubshait;Front. Robot. AI,2020

2. Eng. Arts.2021

3. Exemplifying Prototype-Driven Development through Concepts for Medical Training Simulators;Auflem;Procedia CIRP,2019

4. Cross-dataset Learning and Person-specific Normalisation for Automatic Action Unit Detection;Baltrušaitis,2015

5. OpenFace 2.0: Facial Behavior Analysis Toolkit;Baltrusaitis,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3