Safety considerations for autonomous, modular robotics in aerospace manufacturing

Author:

Walter Christoph,Bexten Simone,Felsch Torsten,Shysh Myroslav,Elkmann Norbert

Abstract

Industrial robots are versatile machines that can be used to implement numerous tasks. They have been successful in applications where–after integration and commissioning–a more or less static and repetitive behaviour in conjunction with closed work cells is sufficient. In aerospace manufacturing, robots still struggle to compete against either specialized machines or manual labour. This can be attributed to complex or custom parts and/or small batch sizes. Here, applicability of robots can be improved by enabling collaborative use-cases. When fixed protective fences are not desired due to handling problems of the large parts involved, sensor-based approaches like speed and separation monitoring (SSM) are required. This contribution is about how to construct dynamic volumes of space around a robot as well as around a person in the way that their combination satisfies required separation distance between robot and person. The goal was to minimize said distance by calculating volumes both adaptively and as precisely as possible given the available information. We used a voxel-based method to compute the robot safety space that includes worst-case breaking behaviour. We focused on providing a worst-case representation considering all possible breaking variations. Our approach to generate the person safety space is based on an outlook for 2D camera, AI-based workspace surveillance.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference39 articles.

1. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

2. Discussion of using machine learning for safety purposes in human detection;Bexten,2020

3. Realtime multi-person 2d pose estimation using part affinity fields;Cao,2017

4. Robotized assembly and inspection of composite fuselage panels: The LABOR project approach;Caterino;IOP Conf. Ser. Mat. Sci. Eng.,2021

5. A multimodal approach to human safety in collaborative robotic workcells;Costanzo;IEEE Trans. Autom. Sci. Eng.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3