Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Author:

Langer Edith,Patten Timothy,Vincze Markus

Abstract

Detecting changes such as moved, removed, or new objects is the essence for numerous indoor applications in robotics such as tidying-up, patrolling, and fetch/carry tasks. The problem is particularly challenging in open-world scenarios where novel objects may appear at any time. The main idea of this paper is to detect objects from partial 3D reconstructions of interesting areas in the environment. In our pipeline we first identify planes, consider clusters on top as objects, and compute their point-pair-features. They are used to match potential objects and categorize them robustly into static, moved, removed, and novel objects even in the presence of partial object reconstructions and clutter. Our approach dissolves heaps of objects without specific object knowledge, but only with the knowledge acquired from change detection. The evaluation is performed on real-world data that includes challenges affecting the quality of the reconstruction as a result of noisy input data. We present the novel dataset ObChange for quantitative evaluation, and we compare our method against a baseline using learning-based object detection. The results show that, even with a targeted training set, our approach outperforms the baseline for most test cases. Lastly, we also demonstrate our method’s effectiveness in real robot experiments.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference57 articles.

1. Object Persistence in 3D for Home Robots;Alimi,2012

2. Meta-rooms: Building and Maintaining Long Term Spatial Models in a Dynamic World;Ambrus,2014

3. Hobbit: Providing Fall Detection and Prevention for the Elderly in the Real World;Bajones;J. Robotics,2018

4. Rearrangement: A challenge for Embodied AI;Batra;arXiv preprint arXiv:2011.01975,2020

5. Sporeagent: Reinforced Scene-Level Plausibility for Object Pose Refinement;Bauer,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3