Real-time robot topological localization and mapping with limited visual sampling in simulated buried pipe networks

Author:

Li Xiangyu S.,Nguyen T. L.,Cohn Anthony G.,Dogar Mehmet,Cohen Netta

Abstract

Introduction: Our work introduces a real-time robotic localization and mapping system for buried pipe networks.Methods: The system integrates non-vision-based exploration and navigation with an active-vision-based localization and topological mapping algorithm. This algorithm is selectively activated at topologically key locations, such as junctions. Non-vision-based sensors are employed to detect junctions, minimizing the use of visual data and limiting the number of images taken within junctions.Results: The primary aim is to provide an accurate and efficient mapping of the pipe network while ensuring real-time performance and reduced computational requirements.Discussion: Simulation results featuring robots with fully autonomous control in a virtual pipe network environment are presented. These simulations effectively demonstrate the feasibility of our approach in principle, offering a practical solution for mapping and localization in buried pipes.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference32 articles.

1. A robust localization system for inspection robots in sewer networks;Alejo;Sensors,2019

2. Review of visual odometry: types, approaches, challenges, and applications;Aqel;SpringerPlus,2016

3. Topological mobile robot localization using fast vision techniques;Blaer,2002

4. Active and passive spatial learning in human navigation: acquisition of survey knowledge;Chrastil;J. Exp. Psychol. Learn. Mem. cognition,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3