Impact of resolution, colour, and motion on object identification in digital twins from robot sensor data

Author:

Bremner Paul,Giuliani Manuel

Abstract

This paper makes a contribution to research on digital twins that are generated from robot sensor data. We present the results of an online user study in which 240 participants were tasked to identify real-world objects from robot point cloud data. In the study we manipulated the render style (point clouds vs voxels), render resolution (i.e., density of point clouds and granularity of voxel grids), colour (monochrome vs coloured points/voxels), and motion (no motion vs rotational motion) of the shown objects to measure the impact of these attributes on object recognition performance. A statistical analysis of the study results suggests that there is a three-way interaction between our independent variables. Further analysis suggests: 1) objects are easier to recognise when rendered as point clouds than when rendered as voxels, particularly lower resolution voxels; 2) the effect of colour and motion is affected by how objects are rendered, e.g., utility of colour decreases with resolution for point clouds; 3) an increased resolution of point clouds only leads to an increased object recognition if points are coloured and static; 4) high resolution voxels outperform medium and low resolution voxels in all conditions, but there is little difference between medium and low resolution voxels; 5) motion is unable to improve the performance of voxels at low and medium resolutions, but is able to improve performance for medium and low resolution point clouds. Our results have implications for the design of robot sensor suites and data gathering and transmission protocols when creating digital twins from robot gathered point cloud data.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference22 articles.

1. Generation and VR visualization of 3D point clouds for drone target validation assisted by an operator;Bergé,2016

2. Poster: Immersive point cloud virtual environments;Bruder,2014

3. From ROS to unity: Leveraging robot and virtual environment middleware for immersive teleoperation;Codd-Downey,2014

4. Point cloud interaction and manipulation in virtual reality;Garrido,2021

5. Vision meets robotics: The KITTI dataset;Geiger;Int. J. Rob. Res.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3