On the design of deep learning-based control algorithms for visually guided UAVs engaged in power tower inspection tasks

Author:

Maitre Guillaume,Martinot Dimitri,Tuci Elio

Abstract

This paper focuses on the design of Convolution Neural Networks to visually guide an autonomous Unmanned Aerial Vehicle required to inspect power towers. The network is required to precisely segment images taken by a camera mounted on a UAV in order to allow a motion module to generate collision-free and inspection-relevant manoeuvres of the UAV along different types of towers. The images segmentation process is particularly challenging not only because of the different structures of the towers but also because of the enormous variability of the background, which can vary from the uniform blue of the sky to the multi-colour complexity of a rural, forest, or urban area. To be able to train networks that are robust enough to deal with the task variability, without incurring into a labour-intensive and costly annotation process of physical-world images, we have carried out a comparative study in which we evaluate the performances of networks trained either with synthetic images (i.e., the synthetic dataset), physical-world images (i.e., the physical-world dataset), or a combination of these two types of images (i.e., the hybrid dataset). The network used is an attention-based U-NET. The synthetic images are created using photogrammetry, to accurately model power towers, and simulated environments modelling a UAV during inspection of different power towers in different settings. Our findings reveal that the network trained on the hybrid dataset outperforms the networks trained with the synthetic and the physical-world image datasets. Most notably, the networks trained with the hybrid dataset demonstrates a superior performance on multiples evaluation metrics related to the image-segmentation task. This suggests that, the combination of synthetic and physical-world images represents the best trade-off to minimise the costs related to capturing and annotating physical-world images, and to maximise the task performances. Moreover, the results of our study demonstrate the potential of photogrammetry in creating effective training datasets to design networks to automate the precise movement of visually-guided UAVs.

Publisher

Frontiers Media SA

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3