AROS: Affordance Recognition with One-Shot Human Stances

Author:

Pacheco-Ortega Abel,Mayol-Cuevas Walterio

Abstract

We present Affordance Recognition with One-Shot Human Stances (AROS), a one-shot learning approach that uses an explicit representation of interactions between highly articulated human poses and 3D scenes. The approach is one-shot since it does not require iterative training or retraining to add new affordance instances. Furthermore, only one or a small handful of examples of the target pose are needed to describe the interactions. Given a 3D mesh of a previously unseen scene, we can predict affordance locations that support the interactions and generate corresponding articulated 3D human bodies around them. We evaluate the performance of our approach on three public datasets of scanned real environments with varied degrees of noise. Through rigorous statistical analysis of crowdsourced evaluations, our results show that our one-shot approach is preferred up to 80% of the time over data-intensive baselines.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference42 articles.

1. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures;Beasley;J. Exp. Educ.,1995

2. YOLOv4: Optimal speed and accuracy of object detection;Bochkovskiy,2020

3. End-to-End object detection with transformers;Carion,2020

4. Matterport3D: Learning from RGB-D data in indoor environments;Chang,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3