State-transfer modeling collective behavior of multi-ball Bernoulli system based on local interaction forces

Author:

Ye Fan,Abdulali Arsen,Iida Fumiya

Abstract

Collective behavior observed in nature has been actively employed in swarm robotics. In order to better respond to external cues, the agents in such systems organize themselves in an ordered structure based on simple local rules. The central assumption, in swarm robotics, is that all agents in the system collaborate to fulfill a common goal. In nature, however, many multi-agent systems exhibit a more complex collective behavior involving a certain level of competition. One representative example of complex collective behavior is a multi-ball Bernoulli-ball system. In this paper, by extracting local force among the Bernoulli balls, we approximated the state-transfer model mapping interaction forces to observed behaviors. The results show that the collective Bernoulli-ball system spent 41% of its time on competitive behaviors, in which up to 84% of the interaction state is unorganized. The rest 59% of the time is spent on collaborative behavior. We believe that the novel proposed model opens new avenues in swarm robotics research.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference40 articles.

1. Implicit coordination for 3d underwater collective behaviors in a fish-inspired robot swarm;Berlinger;Sci. Robot.,2021

2. Optimization of stochastic strategies for spatially inhomogeneous robot swarms: A case study in commercial pollination;Berman,2011

3. Swarm robotics: A review from the swarm engineering perspective;Brambilla;Swarm Intell.,2013

4. Self-Organization in Biological Systems

5. Collective cognition in animal groups;Couzin;Trends Cognitive Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3