Analyzing the Explanatory Power of Bionic Systems With the Minimal Cognitive Grid

Author:

Lieto Antonio

Abstract

In this article, I argue that the artificial components of hybrid bionic systems do not play a direct explanatory role, i.e., in simulative terms, in the overall context of the systems in which they are embedded in. More precisely, I claim that the internal procedures determining the output of such artificial devices, replacing biological tissues and connected to other biological tissues, cannot be used to directly explain the corresponding mechanisms of the biological component(s) they substitute (and therefore cannot be used to explain the local mechanisms determining an overall biological or cognitive function replicated by such bionic models). I ground this analysis on the use of the Minimal Cognitive Grid (MCG), a novel framework proposed in Lieto (Cognitive design for artificial minds, 2021) to rank the epistemological and explanatory status of biologically and cognitively inspred artificial systems. Despite the lack of such a direct mechanistic explanation from the artificial component, however, I also argue that the hybrid bionic systems can have an indirect explanatory role similar to the one played by some AI systems built by using an overall structural design approach (but including the partial adoption of functional components). In particular, the artificial replacement of part(s) of a biological system can provide i) a local functional account of that part(s) in the context of the overall functioning of the hybrid biological–artificial system and ii) global insights about the structural mechanisms of the biological elements connected to such artificial devices.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference29 articles.

1. The newell Test for a Theory of Cognition;Anderson;Behav Brain Sci,2003

2. Psychometric Artificial Intelligence;Bringsjord;Journal of Experimental & Theoretical Artificial Intelligence,2011

3. Learning to Control a Brain-Machine Interface for Reaching and Grasping by Primates;Carmena;PLoS Biol,2003

4. Extending, Changing, and Explaining the Brain;Chirimuuta;Biol Philos,2013

5. The Discovery of the Artificial

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3